Showing posts with label meter. Show all posts
Showing posts with label meter. Show all posts

Sunday, 24 August 2014

USING SPEEDLITES FOR BETTER RESULTS


Speedlites , simply stated, are accessory flashes that attach to the hot shoe of your DSLR. By raising the light source above the camera, the speedlite produces a more pleasing effect than the harsh head-on shadow cast by the camera’s built-in popup flash.

But there’s more to speedlites than that. Most have swivel heads that allow you to “bounce” the flash off a ceiling or wall to provide a more diffuse light source. This has the effect of softening the shadows behind the subject and more evenly filling in shadow areas on the face. Because the flash head is now well separated from the camera body, you can also add light modifiers such as a collapsible softbox. As the name implies, it softens or diffuses the light, allowing you to aim the speedlite directly at the subject rather than depending on a bounce surface. Outdoors in daylight, these are often used as a “fill” light to overcome the harsh shadows cast on the face by mid-day sunlight.

Better yet, speedlites have their own internal battery supply, so they can be separated from the camera and used in the same way as studio strobes. By mounting them on light stands and firing them with inexpensive radio triggers, you can have studio lighting anywhere, without the need for AC power. Add lightweight bounce umbrellas to diffuse the light evenly, and you can have as many light sources as you like filling an area with even, soft light.

So how do you configure this portable studio? Most of the small stuff can be bought on eBay much cheaper than at local retailers, but bulky items like light stands and umbrellas, in my humble opinion, can be sourced locally for not much more than overseas online pricing. And you have the benefit of not having to wait 2-3 weeks for product.

When it comes to speedlites and radio triggers, however, I would like to make a recommendation. While I want to stress that I have no affiliation with the company, I have found products made by Yongnuo of China to be well made and very cost effective. Just be sure that when you make a purchase that the models you choose are designed for your specific DSLR model. In some cases, their triggers are also compatible with camera manufacturers’ speedlites, but why not buy a speedlite that works as well at a third of the price?

So what is a radio trigger? If you decide to use a speedlite off-camera, you will need a means of making the flash fire when you press the camera’s shutter button. The transmitter mounts on your camera’s hot shoe and sends a signal to the receiver, which you mount on the light stand. The receiver has a hot shoe built onto it, so you simply attach your speedlite to it. Some triggers, like the YN-603, are actually transceivers, so you can use them as either a transmitter (when mounted on the camera’s hot shoe), or a receiver (when the speedlite is attached to it).

Now, there are two types of speedlites that you should be aware of: manual (such as the YN-560 III) or full ETTL (such as the YN-565 EXII). ETTL stands for Evaluative Through The Lens, meaning the camera and speedlite work together through connections on the hot shoe to ensure that the light output from the speedlite gives optimal exposure.
YN-560 III in off-camera configuration

A manual speedlite, however, requires that you set the light output on the speedlite itself by either trial-and-error or by using a flash meter. Studio setups are typically all manual. The YN-560 III has a very nice feature: built in radio receivers that are compatible with the YN-603 trigger. This means that you only need a single YN-603 on the camera’s hot shoe, rather than also attaching one to each of the speedlites to act as receivers. One feature of a manual flash is that its hot shoe connection is comprised of only a single contact point. This makes it compatible with a wide range of cameras, as opposed to an ETTL speedlite that has an arrangement of multiple contacts that are specific to a camera brand. This is why you must buy an ETTL speedlite specifically for your camera.
 
 

Yongnuo also makes an ETTL radio trigger called the YN-622. Two of these transceivers will allow you to trigger a compatible off-camera ETTL speedlite like the YN-565 EXII in full ETTL mode, meaning you don’t have to manually set the speedlite output. The camera reads the light from the speedlite through its lens and sends commands to the speedlite over the YN-622 radio link to adjust its output. You can also control groups of speedlites with these so that each has a different output level, but still controlled by the camera.

YN-565 EXII operating ETTL through a YN-622
Another benefit of using the YN-622 and a compatible speedlite on the camera is that you can use that speedlite in ETTL mode while simultaneously triggering a manual flash with a second YN-622 off-camera. That way, you can quickly move from a studio setup with two lights to a roaming subject using the single ETTL speedlite on your camera (such as in a wedding reception). The YN-622 simply attaches to the camera’s hot shoe and the speedlite attaches to the YN-622’s hot shoe.


Stacked YN-603 on a YN-622
While the Yongnuo product line is great value for money, however, I get the sense that the company doesn’t have a uniform design vision. For example, the built-in trigger receiver in the YN-560 III doesn’t exist in the YN-565 EXII. Where this becomes an issue is if you want to use the 560 and 565 together in a setup (with the 565 set to manual mode) and trigger them both from a single YN-603 trigger on the camera. Also, you can’t mix and match YN-603 and YN-622’s in a setup because they’re not compatible. You can, however, stack one on top of the other on your camera’s hot shoe and have each trigger their respective receivers.
By doing a little research, you can configure a professional lighting setup for well under $500. Just be sure that you are buying product that is 100% compatible with your camera make and model

Thursday, 26 September 2013

PERFECTING THE PANORAMIC


It’s getting easier to make panoramics with today’s cameras. Some will actually do the stitching together for you without the need for software. But unless you take control of the process, you may be selling yourself short on results.

Here is a checklist you can follow in preparation for shooting your panoramic. It may look a little daunting, but it will become old hat with a little practice:

  • Arrive Early   In order to get through this checklist, you’ll need the extra setup time before the light changes!
  • Use a Tripod   A panoramic is comprised of a series of adjacent photographs stitched together in software to form a single wide-angle image. In the stitching process, the software does its best to match adjacent images seamlessly, but there is usually a bit of twisting required to match them perfectly. This requires cropping the final panoramic. Unless the individual images are shot with the camera absolutely level, the twisting and subsequent cropping may get to the point where much of the scene is lost.
  • Level the Tripod and Camera  I have a bubble level on the base of my tripod which I use to get the legs levelled up first. I also use a bubble level that slips onto the camera’s hot shoe, which I use to do fine levelling adjustments. The reason for using both is that uneven legs may give me the impression that I have a level camera at one position, using the hot shoe level. But as I pan, I would likely see the level drift off centre. Once you have tweaked both the legs and the pan/tilt head, try panning through the intended range of your panoramic to ensure you have optimized both.
  • Set the Camera to Manual (M) mode   Imagine you’re shooting a panoramic made up of photos that have dramatically different light content. In any mode but Manual, each photo would be exposed differently because the light metering system built into your camera tries to set the exposure automatically to an average 18% grey level. In this scenario, the panoramic wouldn’t look right because the inherently darker scenes would be forced to look lighter compared to the others, resulting in a patchy-looking result. Sure, you could try matching the exposures in software before stitching, but it’s easier to get it right in the camera. I pan the entire scene first, using the digital meter to set a shutter speed/aperture combination that averages a normal exposure. As a result, some shots will be over-exposed slightly, others under. As long as the histograms for all photos don’t show any clipping at the black or white points, you’re OK.
    The Camera's Light Meter
    The camera's digital light meter. Zero is optimal exposure.
    
 
 
 
 
 
 
  •  Set the Camera ISO setting to a fixed value  Some cameras have Auto ISO setting. Per the last point about exposure, ensure you choose a fixed value (eg. 200) rather than Auto.
  • Set the Camera to manual focus  Most SLR lenses have a switch allowing you to disengage the motor that automatically focuses your lens before you take a shot. For panoramics, set it to manual focus (MF). The reason for this is that as you pan to take each of the shots, the camera may refocus on something close in or far away, especially if there’s an object in one of the shots that is prominent. That could result in uneven focus across the panoramic. Pick one focus setting that works for the whole panoramic and leave it there.
  • Take the Camera out of Auto White Balance  Similar to the argument in the last two points above, you don’t want the camera to change the colour balance as you pan because of changing content. Choose one of the presets instead of Auto. For instance, if shooting on an overcast day, use the Cloudy Bright setting. If shooting an indoor scene under fluorescent lights, use the Fluorescent setting. If you have access to a photo editing program that allows white balance adjustment, don’t worry about what preset you choose, because you can correct all the shots by the same amount if the preset you chose results in wonky colour.
  • Overlap the Photos  Panoramic software uses artificial intelligence to look for similarities between adjacent shots then join those features seamlessly. In order to provide those reference points, you need to provide overlap in content between adjacent shots. I typically overlap by 25%. If I start my panoramic on the left end then take subsequent shots by panning left to right, this means that my second photo contains the rightmost 25% of the first photo. I’ve made marks on my tripod head that tell me how far to pan before taking the next shot while allowing 25% overlap. I have marks for both landscape format and portrait formats. But, of course, those marks only work for one focal length, which brings me to the next point….
  • Use a “Normal” focal length  For a consumer digital SLR with an APS-C sensor, normal focal length is about 33mm. Anything shorter is considered wide angle. The wider you go, the more barrel or pincushion distortion will be introduced. This may make it harder for the stitching software to match the photos without twisting the photos to counter this effect. The more twisting, the more cropping of the final panoramic you’re likely to have to do. Of course, you could use a longer focal length without this concern, but remember that depth of field reduces with focal length.  I use a 35mm prime lens for panoramics, adapted from an old film camera.
  • Choose the Right Content  I like shooting sky panoramics. I found out the hard way that sometimes the stitching software will not work properly with some content – particularly soft images with few hard edges. Some sunset clouds fit that description. Sometimes, it helps to include some hard edge detail (like treetops) to assist in the stitching. You can always crop it out later.
  • 
  • Choose the Right Software  I find that the ‘premier’ photo editing package gives too many choices when creating panoramics. You have to try them all to find out which one works best, but my experience is that I generally don’t like any of the results. On the other hand, a cheap and cheerful package sometimes works better and with less fuss. I particularly like ArcSoft’s Panorama Maker, which came bundled free with my point-and-shoot camera.
 
 
3 overlapping images stitched together, before cropping. Note how the software has to distort the images to make them match up.


As you can see, the process of shooting panoramics like a pro is very manual. If you’re shooting a scene with moving clouds, set up marks on your tripod so you can rapidly make all your shots before the clouds change position and shape. And finally, resist the temptation to use more than 3 or 4 shots in a panoramic, because you’ll end up with a long, skinny picture sitting in the middle of your print that will look silly.

Wednesday, 8 May 2013

Meter this.

We’ve all seen the portrait photographer holding a white-domed object next to the subject’s face to take a light reading. So why is that being done? Why not just let the camera do its automatic exposure thing and take the picture?



 


It’s a good question in this digital age, where we can instantly review our shots to see if we need to re-shoot with a little exposure compensation. After all, the histogram in the camera tells us just about everything we need to know about the exposure in the shot – is it under- or over-exposed and is the exposure evenly distributed over the entire tonal range?

The short answer is that the handheld meter is mostly used to measure the light falling on the subject from studio strobes or flashes mounted off-camera.  In this scenario, the camera doesn’t typically have the ability to control the flash output, as it does in ETTL mode when the flash is mounted on the camera’s hot shoe.  Hence, studio photographers usually work with the camera in manual exposure mode, where they manually set the shutter speed to a value that will synchronize with the flash and the aperture to a value that gives the correct exposure. Alternatively, they can use the  meter reading to set the brightness of each flash in a multi-light setup to give a particular effect while ensuring a proper exposure.

Here, I’ve used the words ‘light falling on the subject’, meaning incident light. Hence, the incident light handheld meter measures the ambient light and ignores how much light the subject is likely to reflect.  The metering system in our camera, on the other hand, does rely on the light reflected from the subject to determine exposure.

Which is more accurate? The incident meter is, because it is calibrated so that it will give camera settings to make an 18% grey card look like 18% grey (middle mark on the histogram) when photographed.  The reflected meter, however, relies on the subject's tone averaging out to 18% grey in order for the exposure to be accurate. If the subject is overly dark or bright (such as a snow scene), the reflected meter gets fooled because it tells the camera to expose as if the subject is mid-grey. The incident meter would read the light falling on the snow rather than the light reflected from it, thereby resulting in the snow looking like bright white snow rather than grey slush.

I started out stating that the incident meter is used in the studio to measure the light from strobes or flashes, but obviously it has a function in outdoor ambient (continuous) light photography as well. Some photographers work in manual exposure mode all the time and therefore rely on an incident meter for camera settings.

So why bother? Part of the answer may be a throwback to the film days, where you never knew until it was developed whether you got the exposure right or not. An incident meter (and a little exposure  bracketing) gave you the confidence that you got the shot. That way of working may still influence the photographer who has made the transition to digital, partly because it’s good practice.

The bottom line, though, is that anyone seriously considering turning pro using studio lighting setups should consider working with a combination flash/continuous incident meter, if for no other reason than to save time. The alternative is to shoot, tweak, shoot and then tweak some more.

Combination meters can be a bit of an investment, so they’re not for everyone.  If you’ve got the spare change, though, a meter can help you understand the exposure mystery a little better and hit the bullseye every time.